Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[diaqua(μ_3 -succinato)cadmium(II)]

Xuan-Wen Liu

Department of Materials Science and Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066000, People's Republic of China Correspondence e-mail: liuxuanwen2009@163.com

Received 6 March 2009; accepted 29 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.023; wR factor = 0.053; data-to-parameter ratio = 12.1.

The title compound, $[Cd(C_4H_4O_4)(H_2O)_2]_n$, has been synthesized under hydrothermal conditions. The asymmetric unit consists of one Cd^{2+} cation, one succinate anion and two aqua ligands. The Cd atoms present a distorted pentagonal bipyramidal coordination and are bridged into layers parallel to (201) by succinate ligands.

Related literature

For different bridging modes in succinato complexes, see: Ng (1998); Rastsvetaeva *et al.* (1996); Brusau *et al.* (2000); He *et al.* (2006); He *et al.* (2007). For geometrical comparisons with related compounds, see Huo *et al.* (2005); Zhuo *et al.* (2006).

a = 7.7130 (15) Å

b = 12.231 (2) Å

c = 8.0560 (16) Å

Experimental

Crystal data	
$[Cd(C_4H_4O_4)(H_2O)_2]$	
$M_r = 264.51$	
Monoclinic, $P2_1/c$	

$\beta = 94.71 \ (3)^{\circ}$
V = 757.4 (2) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\rm min} = 0.35, T_{\rm max} = 0.55$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.023 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.053 & \text{independent and constrained} \\ S &= 1.05 & \text{refinement} \\ 1409 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.40 \text{ e } \text{ Å}^{-3} \\ 116 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.68 \text{ e } \text{ Å}^{-3} \end{split}$$

 $\mu = 2.87 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.028$

 $0.40 \times 0.30 \times 0.21 \text{ mm}$

6371 measured reflections

1409 independent reflections 1335 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Cd1-O4 ⁱ	2.255 (2)	Cd1-O5	2.329 (3)
Cd1-O2	2.284 (2)	Cd1-O1	2.389 (2)
Cd1-O6	2.302 (3)	$Cd1 - O3^{i}$	2.690 (2)
Cd1-O4 ⁱⁱ	2.316 (2)		
	1 . 1 . 1		

Symmetry codes: (i) x - 1, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2243).

References

- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Brusau, E. V., Pedregosa, J. C. G., Narda, E., Echeverria, G. & Punte, G. (2000). J. Solid State Chem. 153, 1–8.
- He, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019.
- He, Q., Zi, J.-F. & Zhang, F.-J. (2006). Acta Cryst. E62, m1266-m1267.
- Huo, L.-H., Gao, S. & Ng, S. W. (2005). Acta Cryst. E61, m2357-m2358.
- Ng, S. W. (1998). Acta Cryst. C54, 745-750.
- Rastsvetaeva, R. K., Pushcharovsky, D. Yu., Furmanova, N. G. & Sharp, H. (1996). Z. Kristallogr. 211, 808–810.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhuo, X., Pan, Z.-R., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006). Chin. J. Inorg. Chem. 22, 1847–1851.

supplementary materials

Acta Cryst. (2009). E65, m574 [doi:10.1107/S1600536809011593]

Poly[diaqua(#3-succinato)cadmium(II)]

X.-W. Liu

Comment

The succinate dianion has been used as a bridging ligand in the preparation of multinuclear metal complexes. A variety of bridging modes have been found (Ng,1998; Rastsvetaeva *et al.*, 1996; Brusau *et al.*, 2000; He *et al.*, 2006; He *et al.*, 2007). We report herein the synthesis and crystal stucture of a new succinate complex $[Cd(C_4H_4O_4)(H_2O_2)_2]$ (I).

The asymmetric unit consists of one Cd^{2+} cation, one succinate anion and two aqua ligands (Fig. 1). The Cd atom is coordinated by seven O atoms of three succinate anions and two aqua ligand, forming a distorted pentagonal bipyramidal coordination geometry (Table 1), with Cd—O bond lengths which agree well with those observed in analogous complexes (Huo *et al.*, 2005; Zhuo *et al.*, 2006). Cd atoms are bridged by succinate ligands into a two-dimensional layer (Fig. 2).

Experimental

 $Cd(NO_3)_2.4H_2O$ (0.5 mmol, 0.154 g), succinic acid (0.5 mmol, 0.059 g), sodium hydroxide (1 mmol, 0.04 g) and water (12 ml) were placed in a 23-ml Teflon-lined Parr bomb. The bomb was heated at 453 K for 3 d. The colourless block-shapped crystals were filtered off and washed with water and acetone (yield 45%, based on Cd).

Refinement

Water H atoms were located in a difference Fourier map and refined with restrained O-H (0.85 (1)Å) and free $U_{iso}(H)$. H atoms on C atom were positoned geometrically and refined using a riding model, with C—H = 0.97 Å.

Figures

Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids. Atoms with the suffix A and B are generated by the symmetry operations x + 1, -y + 3/2, z + 1/2 and -x + 2, -y + 1, -z + 2, respectively.

Fig. 2. The 2-D layer structure of compound (I) (H atoms of methylenes are omitted for clarity).

Poly[diaqua(µ3-succinato)cadmium(II)]

Crystal data
$[Cd(C_4H_4O_4)(H_2O)_2]$
$M_r = 264.51$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 7.7130 (15) Å
<i>b</i> = 12.231 (2) Å
c = 8.0560 (16) Å
$\beta = 94.71 \ (3)^{\circ}$
V = 757.4 (2) Å ³
Z = 4

Data collection

Bruker SMART CD area-detector diffractometer	1409 independent reflections
Radiation source: fine-focus sealed tube	1335 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
<i>T</i> = 293 K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -9 \rightarrow 9$
$T_{\min} = 0.35, T_{\max} = 0.55$	$k = -14 \rightarrow 14$
6371 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$

 $wR(F^2) = 0.053$

 $F_{000} = 512.0$ $D_{\rm x} = 2.32 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2567 reflections $\theta = 2.6-25.5^{\circ}$ $\mu = 2.87 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.40 \times 0.30 \times 0.21 \text{ mm}$

Secondary atom site location: difference Fourier map

Hydrogen site location: constr H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0207P)^2 + 1.5P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
1409 reflections	$\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$
116 parameters	$\Delta \rho_{min} = -0.68 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

U _{1SO} / U _{eq}
(3) 0.02570 (10)
(4) 0.0274 (7)
6) 0.0454 (10)
0.055*
0.055*
(5) 0.0349 (9)
0.042*
0.042*
(4) 0.0252 (7)
(3) 0.0367 (6)
(3) 0.0352 (6)
(3) 0.0399 (6)
(3) 0.0307 (6)
(3) 0.0402 (6)
) 0.072 (18)*
) 0.056 (15)*
(3) 0.0332 (6)
(5) 0.044 (12)*
(5) 0.051 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01635 (14)	0.02632 (15)	0.03318 (16)	-0.00248 (9)	-0.00550 (10)	-0.00305 (10)
C1	0.0181 (16)	0.0294 (18)	0.0342 (18)	-0.0041 (14)	-0.0016 (14)	-0.0046 (15)

supplementary materials

C2	0.032 (2)	0.034 (2)	0.065 (3)	-0.0035 (17)	-0.0250 (19)	0.0000 (19)
C3	0.0231 (18)	0.0299 (19)	0.049 (2)	-0.0034 (15)	-0.0132 (16)	-0.0034 (16)
C4	0.0213 (16)	0.0263 (18)	0.0278 (18)	-0.0025 (14)	-0.0003 (13)	-0.0029 (14)
01	0.0220 (12)	0.0292 (14)	0.0572 (17)	0.0006 (10)	-0.0056 (11)	-0.0134 (12)
02	0.0245 (13)	0.0274 (13)	0.0512 (16)	0.0008 (10)	-0.0117 (11)	-0.0102 (11)
03	0.0264 (13)	0.0286 (13)	0.0619 (18)	0.0039 (11)	-0.0132 (12)	-0.0085 (12)
04	0.0229 (12)	0.0228 (12)	0.0448 (15)	-0.0029 (9)	-0.0078 (11)	-0.0017 (10)
05	0.0414 (16)	0.0419 (17)	0.0377 (16)	0.0015 (14)	0.0054 (12)	-0.0026 (13)
06	0.0306 (14)	0.0266 (14)	0.0432 (15)	0.0036 (11)	0.0070(11)	0.0052 (11)
Geometric paran	neters (Å, °)					
Cd1—O4 ⁱ		2.255 (2)	С2—	H2A	0.9	700
Cd1—O2		2.284 (2)	С2—	H2B	0.9	700
Cd1—O6		2.302 (3)	С3—	·C4	1.4	98 (4)
Cd1—O4 ⁱⁱ		2.316 (2)	С3—	H3A	0.9	700
Cd1—O5		2.329 (3)	С3—	H3B	0.9	700
Cd1—O1		2.389 (2)	C4—	03	1.2	33 (4)
$Cd1-O3^{i}$		2.690 (2)	C4—	04	1.2	75 (4)
C102		1.250 (4)	05—	H5B	0.8	4 (3)
C1—01		1.260 (4)	05—	-H5A	0.8	4 (3)
C1—C2		1.498 (5)	O6—	-H6A	0.8	5 (3)
С2—С3		1.474 (5)	06—	-H6B	0.8	5 (3)
O4 ⁱ —Cd1—O2		136.02 (8)	C1—	C2—H2B	108	3.3
O4 ⁱ —Cd1—O6		89.54 (10)	H2A-	—С2—Н2В	107	7.4
O2—Cd1—O6		103.41 (10)	C2—	-C3C4	116	5.0 (3)
O4 ⁱ —Cd1—O4 ⁱⁱ		74.92 (9)	C2—	С3—НЗА	108	3.3
O2—Cd1—O4 ⁱⁱ		147.52 (8)	C4—	С3—НЗА	108	3.3
O6—Cd1—O4 ⁱⁱ		82.91 (9)	C2—	С3—Н3В	108	3.3
O4 ⁱ —Cd1—O5		85.77 (10)	C4—	С3—Н3В	108	3.3
O2-Cd1-O5		88.74 (10)	H3A-	—С3—Н3В	107	7.4
O6-Cd1-O5		166.39 (10)	O3—	-C4—O4	120	0.4 (3)
O4 ⁱⁱ —Cd1—O5		83.54 (10)	03—	-C4—C3	123	3.5 (3)
O4 ⁱ —Cd1—O1		166.71 (8)	04—	-C4—C3	116	5.1 (3)
O2-Cd1-O1		55.52 (8)	C1—	O1—Cd1	89.	42 (19)
O6—Cd1—O1		93.60 (10)	C1—	·O2—Cd1	94.	6 (2)
O4 ⁱⁱ —Cd1—O1		92.64 (8)	C4—	O4—Cd1 ⁱⁱⁱ	103	3.8 (2)
O5—Cd1—O1		88.23 (10)	C4—	O4—Cd1 ^{iv}	146	5.3 (2)
O2—C1—O1		120.4 (3)	Cd1 ⁱⁱ	ⁱ —O4—Cd1 ^{iv}	105	5.08 (9)
O2—C1—C2		121.6 (3)	Cd1–	O5H5B	112	2 (3)
O1—C1—C2		118.0 (3)	Cd1–	O5H5A	111	(3)
C3—C2—C1		115.8 (3)	H5B-		112	2 (3)
C3—C2—H2A		108.3	Cd1–	O6H6A	113	6 (3)
C1—C2—H2A		108.3	Cd1–	O6H6B	110	0(3)
C3—C2—H2B		108.3	H6A-	—O6—H6B	108	3 (3)
O2—C1—C2—C3	3	-16.9 (6)	01—	-C1	2.1	(4)

O1—C1—C2—C3	162.3 (4)	C2—C1—O2—Cd1	-178.7 (3)		
C1—C2—C3—C4	-174.5 (3)	O4 ⁱ —Cd1—O2—C1	170.1 (2)		
C2—C3—C4—O3	9.5 (6)	O6—Cd1—O2—C1	-86.3 (2)		
C2—C3—C4—O4	-170.0 (4)	O4 ⁱⁱ —Cd1—O2—C1	11.7 (3)		
O2—C1—O1—Cd1	-2.0 (3)	O5—Cd1—O2—C1	87.5 (2)		
C2-C1-O1-Cd1	178.7 (3)	O1—Cd1—O2—C1	-1.2 (2)		
O4 ⁱ —Cd1—O1—C1	-151.7 (4)	O3—C4—O4—Cd1 ⁱⁱⁱ	5.3 (4)		
O2—Cd1—O1—C1	1.2 (2)	C3—C4—O4—Cd1 ⁱⁱⁱ	-175.2 (3)		
O6—Cd1—O1—C1	105.0 (2)	O3—C4—O4—Cd1 ^{iv}	153.9 (3)		
O4 ⁱⁱ —Cd1—O1—C1	-172.0 (2)	C3—C4—O4—Cd1 ^{iv}	-26.5 (6)		
O5—Cd1—O1—C1	-88.5 (2)				
Symmetry codes: (i) $x-1$, $-y+3/2$, $z-1/2$; (ii) $-x+1$, $y-1/2$, $-z+1/2$; (iii) $x+1$, $-y+3/2$, $z+1/2$; (iv) $-x+1$, $y+1/2$, $-z+1/2$.					

sup-5

Fig. 1

